O K L A H O M A S T A T E U N I V E R S I T Y SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 3723 Systems I Spring 1999
 Final Exam

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1: (Time-Response)

Derive the transfer function $E_{o}(s) / E_{i}(s)$ of the electrical circuit shown below. Then obtain the response $e_{o}(t)$ when the input $e_{i}(t)$ is a unit step of magnitude E_{i} (i.e., $e_{i}(t)=E_{i} u(t)$). Assume that the initial charge in the capacitor is zero.

Problem 2: (Frequency Response)
Consider the electrical circuits shown beloew. Assume that the input is sinusoidal, $e_{i}(t)=E_{i} \sin \omega t$,
what is the steady state current $i(t)$?

Problem 3: (Block Diagram Reduction)

For the plant shown below prove that transfer function is

$$
\frac{Y(s)}{U(s)}=\frac{G_{1} G_{2} G_{3}}{H_{1} G_{2} G_{3}+H_{3} G_{1} G_{2} G_{3}+G_{1} G_{2} H_{2}+1}
$$

Problem 4: (Transfer Function)
Derive the transfer function $V(s) / E(s)$ for the given RC ladder circuit given below.

Problem 5:

Obtain the inverse z-transform of

$$
X(z)=\frac{\left(1-e^{-T}\right) z^{-1}}{\left(1-z^{-1}\right)\left(1-e^{-T} z^{-1}\right)}
$$

